Jumat, 24 November 2017

Mode Pengalamatan

Pengenalan Mode Pengalamatan
         Mode pengalamatan yaitu bagaimana cara menunjuk dan  mengalamati suatu lokasi memori pada  sebuah alamat di mana operand akan diambil. Mode pengalamatan diterapkan pada set instruksi, dimana pada umumnya instruksi terdiri dari opcode (kode operasi) dan alamat. Setiap mode pengalamatan memberikan fleksibilitas khusus yang sangat penting. Mode pengalamatan ini meliputi direct addressing, indirect addressing, dan immediate addressing.
1. Direct Addresing
Hasil gambar untuk Direct Addressing

Dalam mode pengalamatan direct addressing, harga yang akan dipakai diambil langsung dalam alamat memori lain. Contohnya: MOV A,30h. Dalam instruksi ini akan dibaca data dari RAM internal dengan alamat 30h dan kemudian disimpan dalam akumulator. Mode pengalamatan ini cukup cepat, meskipun harga yang didapat tidak langsung seperti immediate, namun cukup cepat karena disimpan dalam RAM internal. Demikian pula akan lebih mudah menggunakan mode ini daripada mode immediate karena harga yang didapat bisa dari lokasi memori yang mungkin variabel.
Kelebihan dan kekurangan dari Direct Addresing antara lain :
ž  Kelebihan
         Field alamat berisi efektif address sebuah operand
ž  Kelemahan
         Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word

2. Indirect Addresing

Hasil gambar untuk Direct Addressing
            Mode pengalamatan indirect addressing sangat berguna karena dapat memberikan fleksibilitas tinggi dalam mengalamati suatu harga. Mode ini pula satu-satunya cara untuk mengakses 128 byte lebih dari RAM internal pada keluarga 8052. Contoh: MOV A,@R0. Dalam instruksi tersebut, 89C51 akan mengambil harga yang berada pada alamat memori yang ditunjukkan oleh isi dari R0 dan kemudian mengisikannya ke akumulator. Mode pengalamatan indirect addressing selalu merujuk pada RAM internal dan tidak pernah merujuk pada SFR. Karena itu, menggunakan mode ini untuk mengalamati alamat lebih dari 7Fh hanya digunakan untuk keluarga 8052 yang memiliki 256 byte spasi RAM internal.
Kelebihan dan kekurangan dari Indirect Addresing antara lain :
ž  Kelebihan
         Ruang bagi alamat menjadi besar sehingga semakin banyak alamat yang dapat referensi
ž  Kekurangan
     Diperlukan referensi memori ganda dalam satu fetch sehinggamemperlambat preoses operasi

3. Immediate Addresing
            Mode pengalamatan immediate addressing sangat umum dipakai karena harga yang akan disimpan dalam memori langsung mengikuti kode operasi dalam memori. Dengan kata lain, tidak diperlukan pengambilan harga dari alamat lain untuk disimpan. Contohnya: MOV A,#20h. Dalam instruksi tersebut, akumulator akan diisi dengan harga yang langsung mengikutinya, dalam hal ini 20h. Mode ini sangatlah cepat karena harga yang dipakai langsung tersedia.
Kelebihan dan kekurangan dari Immedieate Addresing antara lain :
ž  Keuntungan
         Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand
         Menghemat siklus instruksi sehingga proses keseluruhan akan cepat
ž  Kekurangan
         Ukuran bilangan dibatasi oleh ukuran field alamat

B. Pengenalan pada Register Addressing
            Register adalah merupakan sebagian memori dari mikro prosessor yang dapat diakses dengan kecepatan tinggi. Metode pengalamatan register ini  mirip dengan mode pengalamatan langsung. Perbedaannya terletak pada field alamat yang mengacu pada register, bukan pada memori utamaField yang mereferensi register memiliki panjang 3 atau 4 bit, sehingga dapat mereferensi 8 atau 16 register general purpose.
Kelebihan dan kekurangan Register Addressing :
ž  Keuntungan pengalamatan register
         Diperlukan field alamat berukuran kecil dalam instruksi dan tidak diperlukan referensi memori
         Akses ke regster lebih cepat daripada akses ke memori, sehingga proses eksekusi akan lebih cepat
ž  Kerugian
         Ruang alamat menjadi terbatas
          
Register Indirect Addressing
Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung  Perbedaannya adalah field alamat mengacu pada alamat register. Letak operand berada pada memori yang dituju oleh isi register
Kelebihanan dan kekurangan pengalamatan register tidak langsung adalah sama dengan pengalamatan tidak langsung
ž  Keterbatasan field alamat  diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak
ž  Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung

C. Pengenalan Displacement Addressing dan Stack Addresing
Displacement Addressing adalah menggabungkan kemampuan pengalamatan langsung dan pengalamatan register tidak langsungMode ini mensyaratkan instruksi memiliki dua buah field alamat, sedikitnya sebuah field yang eksplisit
Field eksplisit bernilai A dan field implisit mengarah pada register.
Ada tiga model displacement : Relative addressingBase register addressingIndexing
ž  Relative addressing
Register yang direferensi secara implisit adalah progra counter (PC)
         Alamat efektif relative addresing didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat
         Relativ addressing memanfaatkan konsep lokalitas memori untuk menyediakan operand-operand berikutnya
ž  Base register addresing, register yang direferensi berisi sebuah alamat memori, dan field alamat berisi perpindahan dari alamat itu
         Referensi register dapat eksplisit maupun implisit
         Memanfaatkan konsep lokalitas memori
ž  Indexing adalah field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut
         Merupakan kebalikan dari mode base register
         Field alamat dianggap sebagai alamat memori dalam indexing
         Manfaat penting dari indexing adalah untuk eksekusi program-program iterative
Stack adalah array lokasi yang linier = pushdown list = last-in-first-outStack merupakan blok lokasi yang terbalikButir ditambakan ke puncak stack sehingga setiap saat blok akan terisi secara parsial. Yang berkaitan dengan stack adalah pointer yang nilainya merupakan alamat bagian paling atas stackDua elemen teratas stack dapat berada di dalam register CPU, yang dalam hal ini stack pointer mereferensi ke elemen ketiga stackStack pointer tetap berada dalam register
Dengan demikian, referensi-referensi  ke lokasi stack di dalam memori pada dasarnya merupakan pengalamatan register tidak langsung.

Senin, 25 September 2017

BAB 3 PRINSIP DAN ALAT PERANCANGAN LOGIKA


3.1 Aljabar Boolean
A.      Pengertian Aljabar Boolean dan Hukumnya

Pengertian Aljabar Boolean dan Hukumnya – Aljabar Boolean atau dalam bahasa Inggris disebut dengan Boolean Algebra adalah matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya merupakan Tipe data yang hanya terdiri dari dua nilai yaitu “True” dan “False” atau “Tinggi” dan “Rendah” yang biasanya dilambangkan dengan angka “1” dan “0” pada Gerbang Logika ataupun bahasa pemrograman komputer. Aljabar Boolean ini pertama kali diperkenalkan oleh seorang Matematikawan yang berasal dari Inggris pada tahun 1854. Nama Boolean sendiri diambil dari nama penemunya yaitu George Boole.

B.       Hukum Aljabar Boolean
Dengan menggunakan Hukum Aljabar Boolean ini, kita dapat mengurangi dan menyederhanakan Ekspresi Boolean yang kompleks sehingga dapat mengurangi jumlah Gerbang Logika yang diperlukan dalam sebuah rangkaian Digital Elektronika.
Dibawah ini terdapat 6 tipe Hukum yang berkaitan dengan Hukum Aljabar Boolean

             1.   Hukum Komutatif (Commutative Law)
Hukum Komutatif menyatakan bahwa penukaran urutan variabel atau sinyal Input tidak akan berpengaruh terhadap Output Rangkaian Logika.
Contoh :

a.   Perkalian (Gerbang Logika AND)
X.Y = Y.X

b.   Penjumlahan (Gerbang Logika OR)
X+Y = Y+X

Catatan : Pada penjumlahan dan perkalian, kita dapat menukarkan posisi variabel atau dalam hal ini adalah sinyal Input, hasilnya akan tetap sama atau tidak akan mengubah keluarannya.

           2.      Hukum Asosiatif (Associative Law)
Hukum Asosiatif menyatakan bahwa urutan operasi logika tidak akan berpengaruh terhadap Output Rangkaian Logika.
Contoh :
Perkalian (Gerbang Logika AND)
W . (X . Y) = (W . X) . Y

Penjumlahan (Gerbang Logika OR)
W + (X + Y) = (W + X) + Y

Catatan : Pada penjumlahan dan perkalian, kita dapat mengelompokan posisi variabel dalam hal ini adalah urutan operasi logikanya, hasilnya akan tetap sama atau tidak akan mengubah keluarannya. Tidak peduli yang mana dihitung terlebih dahulu, hasilnya tetap akan sama. Tanda kurung hanya sekedar untuk mempermudah mengingat yang mana akan dihitung terlebih dahulu.

           3.      Hukum Distributif
Hukum Distributif menyatakan bahwa variabel-variabel atau sinyal Input dapat disebarkan tempatnya atau diubah urutan sinyalnya, perubahan tersebut tidak akan mempengaruhi Output Keluarannya.

           4.      Hukum AND (AND Law)
Disebut dengan Hukum AND karena pada hukum ini menggunakan Operasi Logika AND atau perkalian. Berikut ini contohnya :

     5.      Hukum OR (OR Law)
Hukum OR menggunakn Operasi Logika OR atau Penjumlahan. Berikut ini adalah Contohnya :

           6.      Hukum Inversi (Inversion Law)
Hukum Inversi menggunakan Operasi Logika NOT. Hukum Inversi ini menyatakan jika terjadi Inversi ganda (kebalikan 2 kali) maka hasilnya akan kembali ke nilai aslinya.
Jadi, jika suatu Input (masukan) diinversi (dibalik) maka hasilnya akan berlawanan. Namun jika diinversi sekali lagi, hasilnya akan kembali ke semula.






RELASI-RELASI DASAR ALJABAR BOOLEAN :

1.   X + 0 = X
7.    X + X’ = X
13.   X.(Y+Z) = X.Y + X.Z
2.  X + 1 = 1
8.    X . X’ = 0
14.   X + Y.Z = (X+Y) . (X+Z)
3.  X . 0 = 0
9.    X + Y = Y + X
15.   (X + Y)’ = X’ . Y’
4.  X . 1 = X
10.  X . Y = Y . X
16.   (X.Y)’ = X’ + Y’
5.  X + X = X
11.   X+(Y+Z) = (X+Y)+Z
17.   (X’)’ = X
6.  X . X = X
12.  X.(Y.Z) = (X.Y).Z
18.   X.(X+Y) = X
19.   X + (X.Y) = X

Keterangan :
·           Relasi (1), (2), (3) dan (4) disebut dengan Hukum penjalinan dengan konstanta.
·           Relasi (5) dan (6) disebut Hukum perluasan.
·           Relasi (7) dan (8) disebut Hukum komplementasi
·           Relasi (9) dan (10) disebut Hukum komutatif.
·           Relasi (11) dan (12) disebut Hukum asosiatif.
·           Relasi (13) dan (14) disebut Hukum distributif.
·           Relasi (14) tidak dapat digunakan dalam aljabar biasa, tetapi relasi ini sangat berguna dalam memanipulasi ekspresi-ekspresi aljabar boole.
·           Relasi (15) dan (16) disebut Dalil de Morgan.
·           Relasi (17) menyatakan jika suatu variabel dikomplemenkan sebanyak dua kali maka akan didapat nilai asli dari variabel tersebut.
·           Relasi (18) dan (19) disebut Hukum absorpsi.

      

C.       APLIKASI ALJABAR BOOLEAN


1. Jaringan Pensaklaran (Switching Network)
Saklar, yaitu objek yang mempunyai dua buah keadaan; buka dan tutup. Tiga bentuk gerbang paling sederhana:
a. Output b hanya ada jika dan hanya jika x dibuka x
          


2. Output b hanya ada jika dan hanya jika x dan y dibuka
xy

       


3. Output c hanya ada jika dan hanya jika x atau y dibuka x + y
        

D.      RANGKAIAN PENSAKLARAN PADA RANGKAIAN LISTRIK:
1. Saklar dalam hubungan SERI: logika AND


2. Saklar dalam hubungan PARALEL: logika OR